The state of open source accelerated graphics on ARM devices

I’ve been meaning to write about the state of accelerated open source graphics options for a while now to give an update on a blog post I wrote over 5 years ago in January 2012, before the Raspberry Pi even existed! Reading back through that post it was pretty dark times for any form of GUI on ARM devices but with the massive changes in ARM devices and the massive change in SBCs (Single Board Computers) heralded by things like the Raspberry Pi have things improved at all? The answer is generally yes!

The bad

Looking back at that post the MALI situation is still just as dire with ARM still steadfastly refusing to budge. The the LIMA reverse engineering effort started with promise, but went up in smoke with a fairly public community break down, I don’t envision that situation improving any time soon although just recently there appears to be some forward movement happening finally after a long silence. This only covers the MALI-400 series and any newer GPU is a completely different architecture/IP. Even with sessions recently at Linaro Connect titled What’s happening with ARM Mali drivers I don’t see fast change here.

The Imagination Technologies PowerVR is still just as dire as situation as it was five years ago. The company’s incompetent management recently managed to avoid being bought by Apple which in turn, because they’ve screwed the open source community while milking the Apple cash cow, essentially means they’re screwed. I suspect they’ll either open source to try and remain a relevant contender or die in a tire fire. Only time will tell there, in the mean time any ARM SoC that has this IP on board is useless for anything graphical so I’d tend to avoid it, thankfully there seems to be less of them these days.

The good

Despite the two bad examples above there’s actually been a lot of good change in the last five years. We now have a number of options for fully accelerated 2D/3D graphics on ARM SoCs and I run GNOME Shell on Wayland, yes the full open source shiny, on a number of different devices regularly.

NVIDIA true to the rumours did open up all the graphics on the Tegra series of hardware. The new Tegra K/X series have GPUs similar to their x86 offerings with Kepler/Maxwell/Pascal GPU cores but NVIDIA supports these devices by contributing to the nouveau open driver rather than the closed x86 driver. The performance on 32 bit TK1 devices has been decent for a number of releases of Fedora and improves all the time, we’ll be supporting the X series (X1/X2) with their Maxwell/Pascal GPUs in Fedora 27.

In the old post I brushed past Vivante with a mere mention of Marvell and Freescale (now NXP). The Vivante GPUs ship in NXP i.MX6 and i.MX4, some Marvell chips and some TI chips. There was a reverse engineering effort called etnaviv that must have started not long after I wrote that post and after a number of years of development support landed upstream in the kernel late 2015, and in mesa in the 7.1 release allowing us to support fully accelerated Wayland in Fedora 26! Did anyone notice? I didn’t really yell about it as much as I should have! It supports fully accelerated 3D in mesa/wayland, is pretty stable and is improving all the time, well done to all the contributors to that effort!

Another I brushed past in the old post was the Qualcomm Snapdragon SoC. They ship with a Adreno GPU. This was previously closed source, with the SoC primarily used by phone/tablet manufacturers I suspect they didn’t care… until Rob Clark (and no doubt there were other contributors) decided to reverse engineer the driver with the open freedreno driver. This is now the default driver with even Qualcomm contributing to it. We’ll support this in Fedora 27, initially with the 96boards Dragonboard 410c using the freedreno driver, but I doubt it’ll be the last Qualcomm based device we support. The Snapdragon 835 SoC, the device in all the high end Android phones this year and the ARM Windows 10 laptops, is really nice with decent performance, I’d love to be able to support a device with that SoC!

Raspberry Pi, as I mentioned in the introduction, wasn’t even out in when I wrote the original post. When it fist launched there wasn’t an open driver but 5 years later there is, sponsored by Broadcom no less. We introduced initial support for the Raspberry Pi with the open vc4 driver by Eric Anholt in Fedora 25 and it’s improving regularly. It supports fully accelerated 3D in mesa/wayland, and 2D via glamor in mesa.

So in conclusion we have improved by A LOT! We now have numerous different GPUs with open drivers to choose from in all price ranges that support fully accelerated 2D/3D desktops from four different vendors on both ARMv7 and aarch64. The media acceleration offload is also looking quite good, but that’s one for another post. The biggest holdout is MALI, and that would need two open drivers or ARM to come to the table, LIMA might work out for the 400 series, but that won’t work on the newer midguard series. With support in a number of drivers for the shiny new Wayland there’s an increasing number of devices people can use to enjoy the latest desktops fully accelerated!