Using ZRAM as swap on Fedora

One of the changes I did for Fedora 29 adding using ZRAM as swap on ARM. The use of compressed RAM for swap on constrained single board computer devices has performance advantages because the RAM is an order of faster than most of the attached storage and in the case of SD/emmc and related flash storage it also saves on the wear and tear of the flash there extending the life of the storage device.

The use of ZRAM as swap isn’t limited to constrained SBCs though, I also use it on my x86 laptop to great effect. It’s also very simple to setup.

# dnf install zram
# systemctl enable zram-swap.service
# reboot

And that’s it! Simple right? To see how it’s being used there are three commands that are useful:

# systemctl status zram-swap.service
● zram-swap.service - Enable compressed swap in memory using zram
   Loaded: loaded (/usr/lib/systemd/system/zram-swap.service; enabled; vendor preset: disabled)
   Active: active (exited) since Tue 2018-10-09 22:13:24 BST; 3 days ago
 Main PID: 1177 (code=exited, status=0/SUCCESS)
    Tasks: 0 (limit: 4915)
   Memory: 0B
   CGroup: /system.slice/zram-swap.service

Oct 09 22:13:24 localhost zramstart[1177]: Setting up swapspace version 1, size = 7.4 GiB (7960997888 bytes)
Oct 09 22:13:24 localhost zramstart[1177]: no label, UUID=d79b7cf6-41e7-4065-90a9-000811c654b4
Oct 09 22:13:24 localhost zramstart[1177]: Activated ZRAM swap device of 7961 MB
Oct 09 22:13:24 localhost systemd[1]: Started Enable compressed swap in memory using zram.
# swapon
NAME       TYPE      SIZE   USED PRIO
/dev/zram0 partition 7.4G 851.8M   -2
# zramctl
NAME       ALGORITHM DISKSIZE   DATA  COMPR  TOTAL STREAMS MOUNTPOINT
/dev/zram0 lz4           7.4G 848.3M 378.4M 389.9M       8 [SWAP]
#

When I was researching the use of ZRAM there was a lot of information online. A lot of implementations sliced up the zram into multiple slices to enable the balancing of the slices across CPUs, but this is outdated information as the zram support in recent kernels is now multi threaded so there’s no performance advantage to having multiple smaller swap devices any longer, and having a single larger swap space allows the kernel to be more effective in using it.

In Fedora all the pieces of the Fedora implementation are stored in the package source repo. So those that are interested in using zram for other use cases are free to test it. Bugs and RFEs can be reported as issues in pagure or in RHBZ like any other package.

Increasing a libvirt/KVM virtual machine disk capacity

There’s a bunch of howto’s on the internet for increasing the size of a virtual disk of a VM. Of course the best is to use the very useful libguestfs-tools options but there’s been some improvement in tools like sfdisk so I thought I’d document what I did for reference using tools I already had installed.

First shutdown the VM. Once it’s shutdown you need to work out where the disk is located. As this VM is running from my local machine and is just using a raw disk this is straight forward. You can get the details from the virt-manager GUI or virsh dumpxml VM-Name.

Next up we use qemu-img, it’s installed by default with the libvirt stack, to add the extra space we need, in theory this can be done with the VM online, this is a random test VM so online time doesn’t matter, and of course if the VM matters to you there should be a proper backup done first! The fdisk isn’t necessary, it just allows you to see that the extra space is there.

# qemu-img resize /var/lib/libvirt/images/VM-Name.raw +4G
# fdisk -l /var/lib/libvirt/images/VM-Name.raw
Disk /var/lib/libvirt/images/VM-Name.raw: 8 GiB, 8589934592 bytes, 16777216 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xe8b201aa

Device                                            Boot   Start     End Sectors Size Id Type
/var/lib/libvirt/images/VM-Name.raw1 *       2048 2099199 2097152   1G 83 Linux
/var/lib/libvirt/images/VM-Name.raw2      2099200 8388607 6289408   3G 83 Linux
#

Now power up the VM, login as root (or use sudo) for the next bits on the VM. The sfdisk tool has had a bunch of improvements over the last few years for partitioning. If you’ve not used it or looked at it recently I recommend checking the well written man page. Here I’m just expanding last partition (partition 2) on the disk to the maximum size the disk offers. For all the other possibilities “man sfdisk” is your friend!

# echo ", +" | sfdisk -N 2 /dev/vda --no-reread
# partprobe
# resize2fs /dev/vda2

And with that you should be good to go, df and friends will show you the new space, no reboot needed! The VM I have here is very basic partitions, no LVM etc so straight forward, if you have LVM there’s lots of docs on how to deal with that elsewhere.

Fedora on the UDOO Neo

Some time ago I backed the UDOO Neo Kickstarter as it looked like a nifty, well featured, IoT device. I got the full option which came with 1Gb RAM and both wired and wireless Ethernet and some add-on sensors. It was a well run kickstarter campaign and the device was well packaged with a fab box. It has both a Cortex-A9 processor to run Fedora and a Cortex-M4 embedded processor to enable you to do Arduino style functionality which should be interesting to experiment with.

For various reasons it has sat around gathering dust, it’s been a bit of a long drawn out process with me randomly poking it as time allowed.. Primarily this was because there was no decent upstream U-Boot and kernel support, and I’d not had the time to hack that up myself from various downstream git repositories, but even without Fedora support their forked Ubuntu distro in the form of UDOObuntu has an experience that is truly terrible!

Late 2016 the problem of a lack of upstream support for U-Boot and kernel changed with initial basic support landing upstream for all three (Basic, Extended and Full) models so with a few cycles over a weekend it was time to dust it off to see if I could get Fedora 26 (did I mention this has been long running?) running on it and to see what worked.

The first thing for me to do was to setup a serial console for easy debugging. The UDOO Neo documentation is generally outstanding and the pins for the UART1 TTL are documented. Two things to note here is that the headers are female rather than the usual SBC male pins so I had to bodge my usual usb to serial TTL with some male-male jumper wires and you’ll need a ground for the TTL which is undocumented on their page, I used one of the GNDs as documented on connector J7 and all was good.

So after an initial set of fixes to the U-Boot support it saw my Fedora install and started to boot! Success! Well sort of, as mentioned above the initial support is rudimentary, it started to boot the kernel and very quickly managed to corrupt and destroy the filesystem not making it much beyond switch root. That wasn’t good. In the last week or two I’ve had a little time to look again, similar issues, it was better than it was a year or so ago but it still ended up with corruption. I reached out to one of the maintainers from NXP that deals with a bunch of the i.MX platforms and I got directed to a handful of patches, a test kernel and image later and a test boot… all the way to initial-setup! SUCCESS!

The core support for the i.MX6SX SoC and the UDOO Neo is pretty reasonable, with the MMC fixes it’s been very stable, all the core bits are working as expected, included wired and wireless network, thermal, cpufreq, crypto and it looks like the display should work fine. There’s a few quirks that I need to investigate further which should provide for a fun evening or weekend hacking. There has also been recently merged support for the i.MX6SX Cortex-M4 land upstream in Zephyr upstream for the 1.13 release, so getting that running and communication using Open-AMP between Fedora and Zephyr should also be an interesting addition. I think this will be a welcome addition to Fedora 29, and not a moment too soon!!

Fedora on the UP Squared

With the IoT Working Group and Edition moving forward I’ve been looking for an x86_64 device suitable for testing IoT related use cases. I was originally planning on using the MinnowBoard or Joule but given Intel has killed those product lines off it was back to the drawing board. I eventually settled on the UPΒ², in particular I chose the UPΒ² Pentium-4GB-32GB-PACK as it had everything I wanted in one box.

Hardware

The on paper hardware specs show a recent generation Intel Apollo Lake core, reasonable memory and storage options, an onboard FPGA, USB-3, dual ethernet and various other bits. The kit comes with options for active or passive cooling and the later the heatsink is massive, for the moment I’m running it on the passive cooling. The case is OK, I wouldn’t rave about it though. The power connector on the other hand is terrible, the PSU cable doesn’t seat well into the board and I’ve bumped it already and had it lose power, the power button is also tiny, so small in fact I mistook it for a reset button.

Fedora support

As you would expect the support in Fedora 27 is decent, accelerated 4K graphics, wired RealTek ethernet NICs, Intel m.2 PCI-e WiFI/Bluetooth, although the later is only 4.2 for IoT I would have appreciated Bluetooth 5, all work out of the box as expected. The firmware is uEFI and in theory supports secure-boot but I couldn’t work out how to turn it on in the firmware menus as it was greyed out, it also has a TPM2 module I’ve not had time to investigate. They eagle eyed would also note that I mention Fedora 27 even though Fedora 28 has been out a few days. Well for some reason F-28 doesn’t boot, I tried the network installer and the Workstation live image, they both get to the grub menu, then I get no output and nothing for a moment then it resets and we start again. I need to investigate this further but Fedora 27 Workstation livecd booted and installed fine so that’s what it’s got for the moment. Ultimately this is going to a host to test Fedora IoT so while I tested the general support this is fine.

IoT support

There’s a number of reasons I chose this particular device as an IoT test device:

  • Reasonably priced with a reasonable feature set.
  • Intel hasn’t killed it off yet like they’ve done with the Joule platform and Minnowboard 3 so I could actually buy it πŸ™‚
  • Multiple network interfaces, reasonable WiFi and Bluetooth support.
  • Industrial IO sensors via an onboard Intel Sensor Hub. lsiio is reporting 9 sensors of various types. I’ve not checked this further yet.
  • USB-3, a Raspberry Pi HAT compatible connector and other options to add IoT related functionality or interfaces.

FPGA support

I’ve not looked at the FPGA support at all. The upstream kernel now has a FPGA Manager Framework and there’s a bunch of Altera FPGA support there but I’m not sure how it maps to this device. I also have to investigate open source toolchains for FPGA bitstreams as a lot of them just aren’t, I’ll likely do the HW enablement side of things and leave the toolchain bits to people that understand them. I also have the 96boards Ultra96 board so FPGA investigation was already on my Fedora 29 To Do list, and a lot of other people seem quite interested in them of late, no idea why πŸ˜‰

The Raspberry Pi 3 B+ in Fedora

So I’m sure none of you are surprised to hear that I’ve been asked a bunch about support for the Raspberry Pi 3 B+ in Fedora. Well the good news is that it’ll be supported in Fedora 28. Most of the bits were there for the official Fedora 28 beta, it just needed a minor work around, but nightly images since Beta have had all the bits integrated so the upcoming Fedora 28 GA release will support the Raspberry Pi 3 B+ to the same levels as the original 3 B on both ARMv7 and aarch64. The Fedora Raspberry Pi FAQ has now been updated with all the details of both the RPi3+ and Fedora 28.

WiFi

As with the original 3 there’s files with the firmware we can’t redistribute. The details are documented in the Fedora Raspberry Pi FAQ.

You can grab the files like for the 3 although there’s now an extra one, which you don’t really need, but it gives you all the 802.11a frequencies:

$ sudo curl https://fedora.roving-it.com/brcmfmac43455-sdio.txt -o /lib/firmware/brcm/brcmfmac43455-sdio.txt
$ sudo curl https://fedora.roving-it.com/brcmfmac43455-sdio.clm_blob -o /lib/firmware/brcm/brcmfmac43455-sdio.clm_blob

I’ve also done a rpm of the files for both editions of the RPi3 (plus a few other brcm adapters used on ARM boards). You can either just grab the rpm or setup the repo if you want to get the latest if I update it:

$ sudo curl https://fedora.roving-it.com/wireless.repo -o /etc/yum.repos.d//wireless.repo
$ sudo dnf install brcm-firmware

Issues

Like all new things there’s often a few teething problems. Over all the support for the new RPi 3 B+ is relatively solid but like all new devices there’s some bits still bedding down, and the combination of a new device and new OS there’s been a few minor issues that have been seen in some circumstances. We pulled in the latest firmware just before GA to fix some issues but no doubt as it gets wider testing both in Fedora and in the wider Raspberry Pi community more issues may well come up.

The ones we’re aware of are:

  • The new USB hub and gigbit ethernet interface have seen a few issues in some cases. We’ve pulled in quite a few patches to help stabilise the NIC in Linux and it now mostly works in the vast majority of use cases.
  • The USB hub in u-boot, uEFI and grub on aarch64 can cause some issues. If there’s too many USB devices connected it sometimes won’t boot or will do so really slowly. The work around for the moment is to disconnect all the USB devices until Fedora has started to boot and then plug them in.

In Fedora we’ll deliver updates and fixes by the usual updates, in particular as fixes land upstream we’ll review and land them where useful into Fedora, more than likely via a kernel update. If you see a uboot-tools or a bcm283x-firmware update you’ll want to run the rpi-firmware-update command to update the firmware and then reboot for it to take effect.

Older releases

We won’t be supported the new device in the older releases. Why I hear you say? Well it’s possible but it needs update to the firmware, U-Boot and kernel to work. The Raspberry Pi foundation respun Raspbian to support it and basically it’s not straight forward. Much better to have a new shiny Fedora for a new shiny device!

Fedora IoT Edition is go!

Tap tap tap… is this on?

So the Fedora Council has approved my proposal of IoT as a Council Objective. I did a presentation on my IoT proposal to the council a few weeks ago and we had an interesting and wide ranging discussion on IoT and what it means to Fedora. I was actually expecting IoT to be a Spin with a SIG to cover it but the Council decided it would be best to go the whole way and make it an Official Edition with a Working Group to back it! Amazing! One of the side effects of IoT being an accepted Objective is that the Objective Lead has a seat on the Council.

So I would say the real work starts now, but the reality is that there’s been no small amount of work I’ve been doing to get to this point, but there is also now a lot of work to do to get us to a release. We’re going to aim this initially for Fedora 29, with the intention to have a lightweight spin style process to get things up to speed as quick as possible between now and then.

So what will be happening over the coming weeks (and months)? We’ll be getting the working group in place, getting an initial monthly release process in place so that people can start to have something to kick the tires with and provide feedback and drive discussion. With those two big pieces in place we can start to grow the Fedora IoT community and work out the bits that work and bits that don’t work. Iterate early and iterate often as is often said!

So of course the big question is how do you get involved? We’ll be tracking all of the Working Group efforts in a number of places:

  • Fedora IoT Pagure Group: We’ll be using this for issue tracking, release milestones, and for git repositories to contain things like container recipes.
  • Fedora IoT mailing list: If you don’t have a FAS account you can subscribe by emailing (blank is fine) iot-subscribe AT lists.fedoraproject.org and the list server will reply with subscription options.
  • IRC on #fedora-iot
  • Fedora IoT Tracking bug: This will be primarily for tracking dependencies and component RFEs and issues.

The above list will change and evolve as we go, I expect the pagure group, mailing list and IRC to be the primary places of communication. There will of course be updates also on this blog, no doubt Fedora Magazine, FedoraIoT on twitter and elsewhere.

What will there be to do? Well lots, and that is still obviously in flux at the moment. The things that come to mind that we’ll definitely need to address will include, but certainly won’t be limited to, awesome docs, the actual OSTree Atomic host image which will be the key foundation, CI/CD pipelines to automate testing as much as possible, release processes including landing of features once they’re ready, containers and layers to add functionality, a selection of supported reference devices (see also CI/CD in this context too), various IoT frameworks, hardware enablement such as wireless standards and distinct from the supported reference HW, security (a single word can’t even begin to describe this iceberg!) and developer experience to name but a few but there’s so much more! Is everyone excited? Of course you are!

Getting started with Fedora on the 96boards Dragonboard

Support for this board has been a long time coming, it was originally announced in March 2015 and shipped later that summer. Two years on we can finally add support for it to Fedora. The enablement here will also assist us with supporting the newly announced 600c and 820c boards more quickly. We’re not all the way there yet, there’s still some firmwares that needs to go upstream into linux-firmware, but the improvement is fantastic and it’s been a pleasure working with the 96boards and Qualcomm teams getting to where we are today.

At the moment we support running Fedora off either an micro SD card or a USB stick. We don’t currently support running off the eMMC and currently basically treat that as the location of the firmware. Anyway lets get started!

Updating the firmware

You’ll want to update to the latest firmwares, my board originally had an old firmware without support for PSCI and so it didn’t bring up all four cores or support reboot. OOPS! You’ll need the latest linux rescue images from the 96boards download site. As I write this the latest is the 17.09 release (version 88). Create a directory for this file before you unzip it because it’ll expand all into the current directory. While there we also need a u-boot build that’s prepared for flashing, the upstream support isn’t quite complete, we add a few patches to the Fedora build to get everything working nicely. You can grab a pre-built version here and also get LK firmware build which enables display output.

You’ll need a host with the fastboot utility, in Fedora this is found in the android-tools package, and a micro USB cable. This process is very similar to flashing a phone with a new image, not surprising given the chipset really. If you have a serial console on the board you can follow along on the console but it’s not required for this board.

To put the board into fastboot mode we hold down the volume down button, labeled as ‘(-)’ near the middle USB port and then power it on. Wait around 30 seconds to ensure it’s booted to fastboot. You can test this with the fastboot devices command. You’ll likely want to run the next commands as root, or use sudo, and be in the directory you created with the extracted firmware and u-boot build:

sudo ./flashall
sudo fastboot flash aboot emmc_appsboot.mbn
sudo fastboot flash boot u-boot.img
sudo fastboot oem select-display-panel adv7533_1080p

The flashall command runs a series of fastboot command to write out various early boot firmware to the eMMC, then we write u-boot out to the boot partition, and finally ensure that output is configured to appear on the HDMI port. Assuming you don’t get any errors from fastboot that should be all the firmware done and in place.

Fedora image and further setup

Next up is the Fedora image. I chose the Workstation image, but we also have a Minimal Image and a traditional Server image. GNOME not the fastest in the world as 1Gb of RAM isn’t really enough for GNOME-3 anymore, but it works well enough. On a USB stick or Micro-SD card (I’ve tried both). We need to write out the image, then expand the rootfs (Note: update XXX for the device you’re writing to):

xzcat Fedora-Workstation-27-1.6.aarch64.raw.xz | sudo dd status=progress bs=4M of=/dev/XXX
sudo gparted /dev/XXX (expand the last partition)
partprobe

Next up we need to adjust the kernel command line slightly, mount up the first partition and edit /EFI/fedora/grub.cfg and search for the string cma=256MB and delete it, then add in it’s place the following console=tty1 console=ttyMSM0,115200n8. Next mount the boot partition (partition 2) and create a sym link

ln -s dtb-4.13.9-300.fc27.aarch64 dtb

. Unmount the partitions and we should be good to go on the Dragonboard.

Plug in a keyboard, mouse (and/or a usb cable for the serial console if you’re going that route) and a HDMI cable, plug in the USB stick or SD card and power it up. If you’re following along on the serial console you should see output straight away, screen might take a little longer.

Once you’ve booted you should be able to complete initial-setup (text or the one from Workstation) and login. To get the WiFI and Bluetooth working you need to install a Radio (WiFi and friends) firmware package which I’ve made into a rpm you can grab from here until it lands into linux-firmware.

What next?

The DragonBoard 410c is pretty functional. I’ve not widely tested sound, the Venus media offload components (we have all the firmware and kernel bits for this), the GPS or some of the other more advanced components but I’ll have more details about those soon. I’ll be documenting the above plus other bits on the Fedora ARM wiki so keep an eye on that or get involved and help out πŸ˜›

Overview of aarch64 SBC support in Fedora 27

Support for ARM 64 bit (aarch64) Single Board Computers (SBCs) has been one of the most highly requested features along side the Raspberry Pi. It’s something I’ve been working towards almost as long too. Finally with Fedora 27 I felt we would have enough of the bits in place for a Minimum Viable Product (MVP).

You’ll note from the Fedora change linked above I was very cautious with what we planned to achieve. The change has a very focused list of images: Server, Workstation and Minimal and a limited list of devices: basically the Raspberry Pi 3, the 96boards Dragonboard 410c and HiKey, and a handful of AllWinner devices with a focus on the Pine64 series of boards. The reason for this was I knew there was going to be a lot of low level boot and kernel bits that needed focus and polish and the Fedora 27 cycle was severely limited time and resource wise so the plan was to focus on getting all the core bits into place for Fedora 27 and have a couple of well polished devices and then expand that rapidly for Fedora 28.

The key functionality we were aiming for was a well polished uEFI implementation in u-boot to enable a single install/boot path in Fedora on aarch64 using uEFI/shim/grub2 to boot Fedora on both SBCs and SBSA compliant aarch64 platforms. We now have that platform in place, primarily due to Herculean efforts of Rob Clark and Peter Jones, as well as many others who have provided insight into the deep dark details of the uEFI specification. Fedora 27 will ship with a quite heavily patched, well by Fedora’s standards anyway, u-boot 2017.09 which provides us the core of this functionality enabling us to use a vanilla upstream shim and grub2 to boot a standard Fedora. All this work is already upstream, or making it’s way there in 2017.11. In Fedora 28 there will be even more improvements that will enable us to do a bunch of other cool stuff (that’ll be a post for later!) and also enable much quicker upstream board enablement now all the core bits are in place.

So what do we actually support? Well all the usual bits that you would expect on a standard Fedora install, whether it be x86_64, ARMv7 or aarch64, like SELinux, containers, desktops and all the other bits. There’s a few bits and pieces that are a little rough around the edges but overall the feature is pretty robust. On a board by board feature set lets break the this down across the boards:

Raspberry Pi 3

The support for the Raspberry Pi3 is the equivalent to the ARMv7 support but with boot via uEFI/grub2. The memory isn’t quite as good as on 32-bit but that’s to be expected, overall it’s pretty reasonable for a device of the specs and cost. Like on 32 bit support we’re seeing regular improvements each release and throughout the releases. The aarch64 support for the RPi3 is just an evolution to this.

DragonBoard 410c

The support for the DragonBoard 410c is looking pretty decent. Qualcomm has been doing a pretty decent effort to get stuff upstream, we have firmwares for the GPU and for video decode/encode upstream as well, along with kernel drivers and the open freedreno 3D drivers, HDMI audio should work as well. The WiFi firmware isn’t yet upstream but I’ll document how/where to get that and hopefully that should be in linux-firmware soon as well. Overall I’m quite happy with the status of this device, although like all devices with 1Gb RAM it’s a little constrained, but that should make the newly announced 820c with 3Gb of RAM a decent device ;-). All the details for getting it running will soon be in the Fedora 96boards wiki page.

HiKey

Most features and functionality of the HiKey are supported, note this isn’t the HiKey960 (look to F-28 for support for that), except accelerated graphics due to the use of a MALI GPU. Other than that the functionality is pretty decent. You’ll likely want the latest tianocore firmware and the details for that can be found on the Fedora 96boards wiki page.

Pine64 (AllWinner A64 SoC)

We actually should have a number of devices based on the AllWinner A64 SoC working here but we’ve only tested the 3, 2Gb/1Gb/512Mb, Pine64 device sizes. The support for these devices is headless and you will need a serial console else you’re on your own as none of the display bits in the kernel have made it upstream, and of course the GPU is a MALI 400 series so when it does it won’t be fast. The support for the rest of the device is basic, it’s usable for a headless server style device, we support network, USB, KVM, RTC and a few other bits. Other than display we don’t yet support the SDIO attached wireless, sound, crypto offload or any of the other media interfaces. A lot of this is under review upstream so I think Fedora 28 should look much better for this series of devices and 4.15 might even bring very basic console output. Speaking of series of devices which ones should actually work other than the three Pine64 devices? Well the following A64 SoC devices have a Fedora built u-boot and kernel DT support so should work as well as the Pine64: BananaPi-m64, OrangePi Win, SoPine baseboard (PineBook boots if you’re happy with serial console), NanoPi-A64 and the A64-OLinuXino. We had some troubles with the AllWinner H5 SoC devices earlier in the cycle but I’ve had a couple of reports that it seems to be resolved so they should work too and that adds the Orange Pi PC2, Prime and Zero+ 2 as well as the NanoPi NEO2. So that’s around a dozen or so devices! πŸ™‚

Other ARM64 SBCs

I’ve had reports that other aarch64 SBCs boot on Fedora just fine. I’ve not listed those where I can’t verify whether they boot with our uEFI enabled u-boot. Looking around on my desk I do have a number of devices that I expect us to be supporting in Fedora 28, or maybe even just enabling u-boot bits in a F-27 update.

Overall I’m pretty happy with the state of Aarch64 SBCs for Fedora 27 and what we’ve managed to achieve is such a short cycle!

The state of open source accelerated graphics on ARM devices

I’ve been meaning to write about the state of accelerated open source graphics options for a while now to give an update on a blog post I wrote over 5 years ago in January 2012, before the Raspberry Pi even existed! Reading back through that post it was pretty dark times for any form of GUI on ARM devices but with the massive changes in ARM devices and the massive change in SBCs (Single Board Computers) heralded by things like the Raspberry Pi have things improved at all? The answer is generally yes!

The bad

Looking back at that post the MALI situation is still just as dire with ARM still steadfastly refusing to budge. The the LIMA reverse engineering effort started with promise, but went up in smoke with a fairly public community break down, I don’t envision that situation improving any time soon although just recently there appears to be some forward movement happening finally after a long silence. This only covers the MALI-400 series and any newer GPU is a completely different architecture/IP. Even with sessions recently at Linaro Connect titled What’s happening with ARM Mali drivers I don’t see fast change here.

The Imagination Technologies PowerVR is still just as dire as situation as it was five years ago. The company’s incompetent management recently managed to avoid being bought by Apple which in turn, because they’ve screwed the open source community while milking the Apple cash cow, essentially means they’re screwed. I suspect they’ll either open source to try and remain a relevant contender or die in a tire fire. Only time will tell there, in the mean time any ARM SoC that has this IP on board is useless for anything graphical so I’d tend to avoid it, thankfully there seems to be less of them these days.

The good

Despite the two bad examples above there’s actually been a lot of good change in the last five years. We now have a number of options for fully accelerated 2D/3D graphics on ARM SoCs and I run GNOME Shell on Wayland, yes the full open source shiny, on a number of different devices regularly.

NVIDIA true to the rumours did open up all the graphics on the Tegra series of hardware. The new Tegra K/X series have GPUs similar to their x86 offerings with Kepler/Maxwell/Pascal GPU cores but NVIDIA supports these devices by contributing to the nouveau open driver rather than the closed x86 driver. The performance on 32 bit TK1 devices has been decent for a number of releases of Fedora and improves all the time, we’ll be supporting the X series (X1/X2) with their Maxwell/Pascal GPUs in Fedora 27.

In the old post I brushed past Vivante with a mere mention of Marvell and Freescale (now NXP). The Vivante GPUs ship in NXP i.MX6 and i.MX4, some Marvell chips and some TI chips. There was a reverse engineering effort called etnaviv that must have started not long after I wrote that post and after a number of years of development support landed upstream in the kernel late 2015, and in mesa in the 7.1 release allowing us to support fully accelerated Wayland in Fedora 26! Did anyone notice? I didn’t really yell about it as much as I should have! It supports fully accelerated 3D in mesa/wayland, is pretty stable and is improving all the time, well done to all the contributors to that effort!

Another I brushed past in the old post was the Qualcomm Snapdragon SoC. They ship with a Adreno GPU. This was previously closed source, with the SoC primarily used by phone/tablet manufacturers I suspect they didn’t care… until Rob Clark (and no doubt there were other contributors) decided to reverse engineer the driver with the open freedreno driver. This is now the default driver with even Qualcomm contributing to it. We’ll support this in Fedora 27, initially with the 96boards Dragonboard 410c using the freedreno driver, but I doubt it’ll be the last Qualcomm based device we support. The Snapdragon 835 SoC, the device in all the high end Android phones this year and the ARM Windows 10 laptops, is really nice with decent performance, I’d love to be able to support a device with that SoC!

Raspberry Pi, as I mentioned in the introduction, wasn’t even out in when I wrote the original post. When it fist launched there wasn’t an open driver but 5 years later there is, sponsored by Broadcom no less. We introduced initial support for the Raspberry Pi with the open vc4 driver by Eric Anholt in Fedora 25 and it’s improving regularly. It supports fully accelerated 3D in mesa/wayland, and 2D via glamor in mesa.

So in conclusion we have improved by A LOT! We now have numerous different GPUs with open drivers to choose from in all price ranges that support fully accelerated 2D/3D desktops from four different vendors on both ARMv7 and aarch64. The media acceleration offload is also looking quite good, but that’s one for another post. The biggest holdout is MALI, and that would need two open drivers or ARM to come to the table, LIMA might work out for the 400 series, but that won’t work on the newer midguard series. With support in a number of drivers for the shiny new Wayland there’s an increasing number of devices people can use to enjoy the latest desktops fully accelerated!

Raspberry Pi improvements in Fedora 26

So since I landed support for the Raspberry Pi 2 and 3 just in time for Fedora 25 Beta it’s been a bit of a fun ride. The support for Raspberry Pi is mostly done in my spare time along side all the other responsibilities I have and it’s been interesting to see people’s feedback. Going into Fedora 25 I knew it wasn’t going to be perfect but the experience was going to be reasonable for newbies to get going without generally needing serial consoles and it met Fedora’s (and mine) exacting standards on free drivers. I think we achieved that quite well but I also learned a lot in the Fedora 25 cycle and what’s coming in Fedora 26 is quite a substantial jump forward.

Hardware for a good experience

So what have I learned about the first six months or so of Raspberry Pi in Fedora? Well there’s a couple of things that the user can do to ensure a decent starting experience themselves. The biggest FAQs I’ve dealt with on the various support forums are generally fixed by these three things:

  • A proper spec power supply. For the RPi2 this means at least 2 AMPs and for the RPi3 at least 2.5 AMPs. If you want to plug in USB WiFi dongle and a USB HDD you’ll likely want to add a little more! In most cases an old phone charger will not suffice.
  • A good quality Class 10 micro SD card. I generally use Samsung EVO or SanDisk Ultra cards.
  • A Raspberry Pi 2 or 3. Yes, it’s surprising how many people hope to run it on something else. SORRY (actually, I’m not!)!

What’s in Fedora 26 Final

So enough of what to do! Everyone wants to know what improvements arrived in the Fedora 26 Final with the 4.11.x kernels:

  • Pi3 WiFi: It’s been working in F-26 since Alpha and is surprisingly stable. There’s a file you need to grab to enable it. See details in the wiki here.
  • Performance: In the process of dealing with wifi I worked out one of the reasons we were seeing poor performance on the SD card. We’ve had some minor improvements in F-25 but this fix over doubles the performance for me on the SD card.
  • HDMI video: There’s been issues around certain monitors crashing the video (vc4) driver and people getting black screens during boot. While this isn’t perfect yet (ain’t hardware great!!) it’s greatly improved across numerous devices.
  • Composite video: We’ve had support for the composite video since 4.10 but I need people to help test this.
  • Sound: HDMI audio is supported, I’ve done minor testing with the one HDMI audio capable device I have. Analogue audio out isn’t upstream yet.
  • HAT support: We now have all the support needed to do overlays in the kernel/bootloader and dtc stack. I just need to test it some more, document it and work out how we can best distribute pre built overlays to ease consumption. There’s still no consensus on an Overlay Manager from upstream to auto load overlays based on EEPROM on the HATs. In a lot of cases you want to load the overlays from u-boot anyway for things like display. Look out for docs and blog posts on this soon!

What arrived with the 4.12 kernel rebase

  • Thermal support: so if the RPi runs too hot it’ll slow it down
  • More performance improvements and tweaks.

What’s coming in the 4.13 kernel rebase

  • Bluetooth support: upstream finally tracked down the issues here. It’s been a much requested features and I should have the bits in place soon!
  • More performance, stability and graphics improvements and tweaks.

What about Fedora 25?

Some of the above pieces will be coming to Fedora 25 with the 4.12 rebase. The focus of my spare time is Fedora 27 mostly now, with the above coming to F-26. Some components are a lot harder to back port without issues or a complex series of package updates to ensure smooth upgrade. The WiFi and performance improvements were the hardest as part of that change moves around the use of hardware blocks and drivers. I managed to stop both the RPi2 and RPi3 booting numerous times in testing before I properly realised the implications of the change. Getting these changes for users back into a stable release without issues is hard and time consuming to do across all the various use cases. I tried this with some fixes in 4.9 and ended up making the RPi3 very unstable. This cost me a lot of time to debug and fix and I don’t really want a repeat of that!!

Graphics device

One of the surprising side effects was the discovery of a device that is five years old is that Fedora suffered from early adopters issues. We were one of the first distributions to adopt a fully upstream open kernel and graphics stack and with that came a number of issues around monitor detection, especially older/cheaper models that aren’t 1920/1080 “Full HD” or via HDMI to VGA adapters. We’re still working through these with upstream and have improved the situation quite a bit in Fedora 26 overall but it takes time and reproducible use cases which with random hardware isn’t easy or quick! πŸ™

Next up?

I’ll leave Fedora 27 features and functionality for another, this post has been sitting in my drafts folder since June so it’s time to get it out and like my development move on to Fedora 27!