Connect to a wireless network using command line nmcli

I use a lot of minimal installs on various ARM devices. They’re good because they’re quick to download and you can test most of the functionality of the device to ensure it’s working or to quickly test specific functionality but of course it doesn’t have a GUI to use the nice graphical tools which are useful to quickly connect to a wifi network or other things.

This where nmcli comes in handy to quickly do anything you can do with the GUI. To connect to a wireless network I do:

Check you can see the wireless NIC and that the radio is enabled (basically “Airplane” mode):

# nmcli radio
WIFI-HW  WIFI     WWAN-HW  WWAN    
enabled  enabled  enabled  enabled 
# nmcli device
DEVICE  TYPE      STATE         CONNECTION 
wlan0   wifi      disconnected  --         
eth0    ethernet  unavailable   --         
lo      loopback  unmanaged     --         

Then to actually connect to a wireless AP:

# nmcli device wifi rescan
# nmcli device wifi list
# nmcli device wifi connect SSID-Name password wireless-password

And that should be enough to get you connected. You can list the connection with nmcli connection and various other options. It’s pretty straight forward. The only complaint I have is that it doesn’t prompt for a password if you leave it out so it means the AP password is stored on the command line history. Not a major given it’s quite easy to find where it’s stored anyway on the system but it would be a useful addition.

Getting started with MQTT using the Mosquitto broker on Fedora

MQTT is a lightweight publish/subscribe messaging transport designed for machine-to-machine “Internet of Things” connectivity. It’s been used in all sorts of industries from home automation and Facebook Messenger mobile app to health care and remote monitoring over satellite links. Its ideal for mobile apps and IoT because of it’s small footprint, low power usage and small data packets. You can connect to a MQTT Broker over standard TCP/IP ports with or without TLS or over Web Sockets. There are many cloud based MQTT services such as OpenSensors, CloudMQTT, HiveMQ, AWS IoT or Azure IoT Hub but where is the fun in that?

There’s a few message brokers that support MQTT in Fedora including RabbitMQ or ActiveMQ (the version in Fedora is old but it would be nice if someone did update it to the latest version!) but for this I’ll be using Mosquitto as it’s small and relatively straight forward for home and demo usage.

Initial Install
I’ve tested this on a Digital Ocean Fedora 23 VM but for this I’ll be using a Beagle Bone Black with a Fedora 24 Beta minimal image but of course you can run it on any recent Fedora release on any supported device, ARM or otherwise.

After installing Fedora and getting it running on the network install and configure mosquitto:

  dnf install -y mosquitto screen
  mv /etc/mosquitto/mosquitto.conf.example /etc/mosquitto/mosquitto.conf
  firewall-cmd --permanent --add-port=1883/tcp
  firewall-cmd --permanent --add-port=1883/udp
  firewall-cmd --permanent --add-port=8883/tcp
  firewall-cmd --permanent --add-port=8883/udp
  systemctl enable mosquitto.service
  systemctl start mosquitto.service

By default the default settings are relatively straight forward, it runs under the mosquitto user, listens on all interfaces, with config options in /etc/mosquitto. In there is a well documented example config file called mosquitto.conf.example which contains all the default settings. Above we rename it to mosquitto.conf to use as a base config for us to modify. There’s details on using the Let’s Encrypt service on the mosquitto site. If you’re using it on the public internet I’d strongly suggest you configure TLS.

Testing it works
Now that we have a basic install done lets make sure it works and get a basic idea of how MQTT works. Included in the mosquitto package is a couple of client utilities useful for testing the MQTT broker pub/sub functionality. Start up a screen session and in a window run the following commands which subscribes us to the “test/topic” topic to the MQTT broker running on localhost:

  mosquitto_sub -h localhost -t "test/topic" 

Now lets publish some data to that topic. In another screen tab run the following command which will publish a string of text to the topic:

  mosquitto_pub -h localhost -t "test/topic" -m "Hello World!"

You can run multiple subscribers either from the screen session or remote from a different host but remember to change the “-h localhost” to appropriate hostname/IP if you’re testing remotely.

MQTT can also use two types of wild cards when subscribing to topic names. So to be able to read all temperature sensors publishing to a root topic you could use “home/+/temp” which would provide “home/bedroom/temp” and “home/livingroom/temp”. The “+” will match one hierarchical level where as “#” stands for everything deeper so “home/garden/#” would provide all sensors from the garden. When using wild cards you’ll need to know which topic is reporting so use mosquitto_sub in verbose mode:

  mosquitto_sub -h localhost -v -t "test/#"

Quality of Service
One of the killer features of MQTT for low power IoT sensor networks is that it’s a “store and forward” protocol with a couple of options for quality of service (QoS) guarantees. Once the node has registered with the broker any time it sleeps the broker will queue messages and take care of delivering that message to the node as soon as it reconnects. This means the node can sleep as long as needed to preserve battery life and just wake up and connect when it has data to send or at a predetermined interval without ever missing a message.

There’s three things needed to support QoS: 1) The subscriber needs to be registered by ID with the broker 2) The subscriber needs to disable clean-slate behavior (the default is enabled) 3) Both the publisher and subscriber need to be using quality-of-service level one or two so the broker knows it needs to store the messages. More details on QoS levels are covered here.

Here’s a small demo to play with QoS basics. First connect a subscriber to the broker supplying an ID, disable clean slate and enabling QoS level 1:

  mosquitto_sub -h localhost -v -t "test/#" -c -q 1 -i "PotPlant"

Then send the following two messages, one each with and without QoS. You should see them both show up on the subscriber:

  mosquitto_pub -h localhost -t "test/topic" -m "foo" -q 1
  mosquitto_pub -h localhost -t "test/topic" -m "bar"

Now stop the subscriber (Ctrl+c) and while it’s stopped send both of the messages again before restarting the subscriber. When it reconnects you should just receive the “foo” message because it’s the only one specifying a QoS level.

Further Reading
There’s a lot of information about MQTT on the web. The MQTT Essentials page from HiveMQ is a good place to start for further information and Awesome-MQTT is a curated list of MQTT related stuff with everything from language bindings to gateways/plugins for integration with various projects whether they be home audio or enterprise products.

Lipstick on a Pig AKA the Raspberry Pi 3

So while waiting for local scratch kernel builds for much more interesting devices I started looking around to see if I could find details of the kernel sources for the new BCM2837 SoC that is centre stage in the Raspberry Pi 3.

The problem is I couldn’t. What I did find is the hack the Raspberry Pi Foundation uses to boot the RPi3 on github.

So there is no source code release for the new BCM2837 SoC, just a device tree file. Someone said to me “They’re violating the GPL” and before people get out their pitch forks… they’re NOT because this is the code they ship, they are meeting their obligations there.

So for the lay person (yes, I know there’s a lot of deep level tech details I’m glossing over deep ARM architecturey people!!) basically what they are doing is booting this device as a ARMv7 device, and because the code isn’t built for ARMv8 (32 or 64 bit) they really just get the speed bump of a ARMv7 device running a bit faster, and possibly some better memory speeds and other general improvements.

So what does this mean for other distributions that wish to actually to support the Raspberry Pi 3 as a aarch64 device? You currently can NOT do so!. Why? Basically it boils down to two things:

  • Source code release for the kernel: To be honest I don’t think this should be large. People with low level knowledge of ARMv7 and the BCM283x could probably hack this up
  • Firmware support: I suspect there will need to be a new firmware that supports booting this as a aarch64 device. I obviously don’t know for sure but I’m guessing the firmware will need changes to actually properly boot this as a aarch64 device. I’ve little doubt there’s a bunch of hackery going on in there!

Of the above two, if my theory is correct, the firmware is the problematic one because it relies on the Raspberry Pi Foundation to do the work. This work for something that they feel, at the moment, gives them no particular gain but only confusion about multiple OSes. They are of course correct for their use case, basically like old school enterprise where you buy a bigger server to scale vertically because your app won’t scale horizontally, but this is another kick in the guts of the Open Source community they so heavily rely on! Oh well, it’s about as much as I expected from the Raspberry Pi Foundation as after all their devices are only just now becoming usable with upstream kernels and open userspace GPU drivers…. after a mere four years.

So what does this mean for Fedora? Basically the only way we’ll be able to support it in the short, possibly medium, term is like it’s sibling the Raspberry Pi 2 as an ARMv7 device but with added shitty wifi. Really, this device isn’t a cheap aarch64 device, it’s just like lipstick on a pig! If a cheap aarch64 device is what you want one of those go and buy a PINE64.

On the plus side the work needed to support it as a ARMv7 device at the same time as it’s sibling should just be some minor u-boot and kernel device tree patches on top of what I previously documented . Note I’ve not looked closely at this as yet, I’m still waiting for mine to arrive (YAY day 3 of 1 day shipping)! Frankly I’d sooner support it this way, an aarch64 device with terrible USB2 IO and 1GB of RAM won’t provide much, if any, of a perf bump over ARMv7, and then have the Raspberry Pi Foundation spend their time working with Broadcom on fixing the wifi and enabling distribution of the wifi firmware in linux-firmware as proper opensource broadcom wifi support would have a wider impact on the Open Source community the Foundation relies upon!

My ARM grab bag device list

They say the first step of coming to terms with addiction is admitting you have a problem… I have a problem with collecting ARM devices… there I said it! How big is this problem you ask? How about I list them out and let you decide!

I’ll break the list down into categories as I believe it’s big enough to do so :-/

The aarch64 set of devices currently stands at:

  • 2x Applied Mustang (different x-gene SoC revs)
  • AMD Seattle
  • 96boards HiKey (hi6220)

The ARMv7 boards list is currently:

  • Compulabs Trimslice (tegra-2)
  • Toshiba AC100 (tegra-2)
  • nVidia Jetson TK1 (tegra-124)
  • Acer Chromebook (tegra-124)
  • BeagleBoard xM (omap3)
  • Nokia n900 (omap3)
  • Nokia n950 prototype (omap3)
  • BeagleBone (am33xx)
  • BeagleBone Black (am33xx) x3
  • BeagleBone Green (am33xx)
  • PandaBoard ES Prototype (omap4)
  • PandaBoard ES B2 (omap4)
  • CubieBoard (allwinner-a10)
  • CubieTruck (allwinner-a20)
  • Banana Pi (allwinner-a20)
  • C.H.I.P. Alpha x2 (allwinner-r8)
  • Snowball (u8500)
  • Compulabs Utilite (imx6q)
  • WandBoard Quad revb (imx6q)
  • novena board (imx6q)
  • RIoTboard (imx6s)
  • UDOO Neo (imx6sx)
  • Origen (exynos-4)
  • OLPC XO 1.75 – a number of variants (mmp2) xNumerous
  • OLPC XO-4 including XO-Touch (mmp3) xNumerous
  • Linksys WRT1900AC (armada-xp)
  • Mirabox (armada-370)
  • ifc6410 (qcom)
  • Parallella Board (zynq7000)
  • Raspberry Pi 2 x3

The Cortex-M series for IoT sensors is currently:

  • TI SensorTag 2015
  • ARM mBed IoT starter kit
  • BeeWi SmartClim

Other random related bits:

  • BeagleBone Breadboard Prototyping Cape x2
  • BeagleBone CryptoCape
  • Original 256Mb Raspberry Pi model B
  • Grove starter kit for BeagleBone Green
  • Explorer HAT
  • PiGlo HAT
  • TI CC2531 802.15.4 USB dongle x3
  • numerous random sensors

So the list above is the devices that I use for hacking on. I count 41 without listing out the dozen or so ARM based XOs I have (various prototypes and models). I also don’t have in that list phones, tablets and two drones as I don’t really hack on those as it’s not like with the list above I don’t already have enough toys! So do I have a problem?

Playing with Bluetooth Smart devices on Fedora

So I have a few Bluetooth Smart (AKA BT Low Energy or BT-LE) devices including a BeeWi SmartClim Smart Temperature & Humidity Sensor, a TI SensorTag2 and a Runtasic Orbit activity tracker. I thought I’d see if I could connect to them with something other than their proprietary apps that run on my phone and get anything useful out of them.

To do this I installed a Fedora 23 minimal image on a micro SD card for BeagleBone Black, inserted a CSR USB Bluetooth 4.0 dongle and powered it up. Once I’d completed the first boot wizard and logged in I installed the bluetooth command line utility packages with a “sudo dnf install -y bluez bluez-libs”. You don’t need to use a BeagleBone, you can use any ARM device or even a standard laptop which supports Bluetooth 4+ with BT-LE support.

Now that we have a device running we’re ready to start to play.

First lets see if our system sees our bluetooth dongle:

$ sudo hcitool dev
Devices:
	hci0	AA:BB:CC:DD:EE:33

Then lets scan for any Bluetooth Smart devices that are in range:

$ sudo hcitool lescan 
LE Scan ...
A1:B2:C3:D4:E5:F6 (unknown)
A1:B2:C3:D4:E5:F6 CC2650 SensorTag
A9:B8:C7:D6:E5:F4 (unknown)
A9:B8:C7:D6:E5:F4 BeeWi SmartClim

Now create a connection to the device we discovered:

$ sudo hcitool lecc A1:B2:C3:D4:E5:F6
Connection handle 3586

In the bluez package gatttool is a tool we can use to interact with Bluetooth Smart devices. We can use gatttool in interactive mode to send commands to out previously scanned device address:

sudo gatttool -b A1:B2:C3:D4:E5:F6 -I
[78:A5:04:5B:7D:9A][LE]>

Now we connect to the deivce (note in older version of gattool the prefix would change from “[ ]” to “[CON]” now it changes the colour of the BT MAC):

[A1:B2:C3:D4:E5:F6][LE]> connect
Attempting to connect to A1:B2:C3:D4:E5:F6
Connection successful
[A1:B2:C3:D4:E5:F6][LE]>

We can request the device characteristics:

[A1:B2:C3:D4:E5:F6][LE]> characteristics
handle: 0x0002, char properties: 0x02, char value handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
handle: 0x0004, char properties: 0x02, char value handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
handle: 0x0006, char properties: 0x02, char value handle: 0x0007, uuid: 00002a04-0000-1000-8000-00805f9b34fb
handle: 0x0009, char properties: 0x20, char value handle: 0x000a, uuid: 00002a05-0000-1000-8000-00805f9b34fb
handle: 0x000d, char properties: 0x02, char value handle: 0x000e, uuid: 00002a23-0000-1000-8000-00805f9b34fb
handle: 0x000f, char properties: 0x02, char value handle: 0x0010, uuid: 00002a24-0000-1000-8000-00805f9b34fb
handle: 0x0011, char properties: 0x02, char value handle: 0x0012, uuid: 00002a25-0000-1000-8000-00805f9b34fb
handle: 0x0013, char properties: 0x02, char value handle: 0x0014, uuid: 00002a26-0000-1000-8000-00805f9b34fb
handle: 0x0015, char properties: 0x02, char value handle: 0x0016, uuid: 00002a27-0000-1000-8000-00805f9b34fb
handle: 0x0017, char properties: 0x02, char value handle: 0x0018, uuid: 00002a28-0000-1000-8000-00805f9b34fb
handle: 0x0019, char properties: 0x02, char value handle: 0x001a, uuid: 00002a29-0000-1000-8000-00805f9b34fb
handle: 0x001b, char properties: 0x02, char value handle: 0x001c, uuid: 00002a2a-0000-1000-8000-00805f9b34fb
handle: 0x001d, char properties: 0x02, char value handle: 0x001e, uuid: 00002a50-0000-1000-8000-00805f9b34fb
handle: 0x0020, char properties: 0x12, char value handle: 0x0021, uuid: f000aa01-0451-4000-b000-000000000000
handle: 0x0023, char properties: 0x0a, char value handle: 0x0024, uuid: f000aa02-0451-4000-b000-000000000000
handle: 0x0025, char properties: 0x0a, char value handle: 0x0026, uuid: f000aa03-0451-4000-b000-000000000000
handle: 0x0028, char properties: 0x12, char value handle: 0x0029, uuid: f000aa21-0451-4000-b000-000000000000
handle: 0x002b, char properties: 0x0a, char value handle: 0x002c, uuid: f000aa22-0451-4000-b000-000000000000
handle: 0x002d, char properties: 0x0a, char value handle: 0x002e, uuid: f000aa23-0451-4000-b000-000000000000
handle: 0x0030, char properties: 0x12, char value handle: 0x0031, uuid: f000aa41-0451-4000-b000-000000000000
handle: 0x0033, char properties: 0x0a, char value handle: 0x0034, uuid: f000aa42-0451-4000-b000-000000000000
handle: 0x0035, char properties: 0x0a, char value handle: 0x0036, uuid: f000aa44-0451-4000-b000-000000000000
handle: 0x0038, char properties: 0x12, char value handle: 0x0039, uuid: f000aa81-0451-4000-b000-000000000000
handle: 0x003b, char properties: 0x0a, char value handle: 0x003c, uuid: f000aa82-0451-4000-b000-000000000000
handle: 0x003d, char properties: 0x0a, char value handle: 0x003e, uuid: f000aa83-0451-4000-b000-000000000000
handle: 0x0040, char properties: 0x12, char value handle: 0x0041, uuid: f000aa71-0451-4000-b000-000000000000
handle: 0x0043, char properties: 0x0a, char value handle: 0x0044, uuid: f000aa72-0451-4000-b000-000000000000
handle: 0x0045, char properties: 0x0a, char value handle: 0x0046, uuid: f000aa73-0451-4000-b000-000000000000
handle: 0x0048, char properties: 0x10, char value handle: 0x0049, uuid: 0000ffe1-0000-1000-8000-00805f9b34fb
handle: 0x004d, char properties: 0x0a, char value handle: 0x004e, uuid: f000aa65-0451-4000-b000-000000000000
handle: 0x004f, char properties: 0x0a, char value handle: 0x0050, uuid: f000aa66-0451-4000-b000-000000000000
handle: 0x0052, char properties: 0x1a, char value handle: 0x0053, uuid: f000ac01-0451-4000-b000-000000000000
handle: 0x0055, char properties: 0x0a, char value handle: 0x0056, uuid: f000ac02-0451-4000-b000-000000000000
handle: 0x0057, char properties: 0x0a, char value handle: 0x0058, uuid: f000ac03-0451-4000-b000-000000000000
handle: 0x005a, char properties: 0x12, char value handle: 0x005b, uuid: f000ccc1-0451-4000-b000-000000000000
handle: 0x005d, char properties: 0x08, char value handle: 0x005e, uuid: f000ccc2-0451-4000-b000-000000000000
handle: 0x005f, char properties: 0x08, char value handle: 0x0060, uuid: f000ccc3-0451-4000-b000-000000000000
handle: 0x0062, char properties: 0x1c, char value handle: 0x0063, uuid: f000ffc1-0451-4000-b000-000000000000
handle: 0x0066, char properties: 0x1c, char value handle: 0x0067, uuid: f000ffc2-0451-4000-b000-000000000000
[A1:B2:C3:D4:E5:F6][LE]> 

Request the name of the device by querying the appropriate characteristic by hhandle:

[A1:B2:C3:D4:E5:F6][LE]> char-read-hnd 0x3
Characteristic value/descriptor: 53 65 6e 73 6f 72 54 61 67 20 32 2e 30 
[A1:B2:C3:D4:E5:F6][LE]> 

The response is returned as a hexadecimal string. To make it readable we need to convert it to ASCII with some simple python:

 python
Python 2.7.10 (default, Sep  8 2015, 17:20:17) 
[GCC 5.1.1 20150618 (Red Hat 5.1.1-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> "53656e736f7254616720322e30".decode("hex")
'SensorTag 2.0'
>>> 

So that’s the basics of playing with Bluetooth Smart on the command line. I want to work out all of the characteristics and write a simple python daemon to poll the device and then write the output to different locations depending on the config like to a text file or to a MQTT message bus.

Getting IoT kick started on Fedora

So a number of people have been discussing the Internet of Things on Fedora for some time. We now have a Fedora IoT mailing list where these discussions can be more centralised and directed.

So where and how do we get started here? I’m going to kick start some ideas here and repost it as a mail to the list so we can use it as a basis to start the discussion.

As I outlined in my Using Fedora as a base for the IoT revolution talk at Flock there’s a lot of use cases and components that make up a complete IoT stack. I think initially we should focus on two initial goals rather than biting off too much:

  • A IoT internet gateway device
  • A IoT sensors endpoint device

The general idea here is that both of the above would be a very minimal shared build, likely using atomic images to enable easy update/rollback with some specific components for each use case. Initially I suggest we focus on a single, or maybe a couple, of specific devices to limit the scope to something more achievable and to add features as we go.

IoT internet gateway device specs and features

  • Wired and/or wireless ethernet to provide internet connectivity
  • Bluetooth Smart (AKA LE)
  • Thread Stack support (6LoWPAN and friends)
  • 802.15.4 support
  • MQTT Broker support (not standard for a IoT GW but enables easier localised testing)
  • MQTT Client
  • Atomic support: updates, rollback etc
  • Works with both our endpoint below and other IoT OSes such as Contiki

IoT internet sensors endpoint specs and features

  • Wired or wireless ethernet IP support
  • Bluetooth Smart (AKA LE)
  • Equivalent to Thread Stack support (6LoWPAN and friends)
  • MQTT Broker support (not standard for a IoT GW but enables easier testing
  • MQTT Client
  • CoAP client
  • Atomic support: updates, rollback etc
  • Support for various inputs and outputs and sensors

I have no doubt missed a lot of details in the above use cases, it’s somewhere to start. I think we also need to look at tools like Node-RED and tools for managing the devices. IoT is a big topic, the idea is we need to get the conversation start somewhere. I’ll look forward to seeing you all on the list to do that.