Fedora package spring cleaning

So it’s meteorological spring, at least in the Northern Hemisphere, and I’m preparing to move house for the first time in almost a decade so of course it’s time to procrastinate and have a spring clean of the packages I maintain!

A number of these I’ve maintained longer than I’ve been in my current flat and like a lot of the contents of my flat I’m not sure why I still have them! A bunch of them I packaged when MeeGo was the coolest thing to run on your Netbook and before GNOME-3 was stable and packaged and I wanted to run MeeGo on Fedora on my ASUS EeePC 901! Then a bunch I’ve acquired over the years because various things I was interested in depended on them. There’s others I actually have no idea why I own them! Anyway, with my day job doing “Device Edge” or “IoT” and with less spare non work time (why yes, apparently I do have a life outside of Fedora, who knew!) I decided it’s high time I relinquished the maintainership of these packages and let someone else love them or allow them to sail off into the sunset of their, probably long overdue, retirement!

So without further ado the list of packages I relinquishing is as follows…. Please reply to the list message or message me on IRC/email (if you know the Fedora packaging process) to (co)maintain something in this list:

* GNOME related:
clutter
clutter-gtk
clutter-gst
cogl
libchamplain
rest

* A UPnP stack, used (or at least used to be) by GNOME and others:
gssdp
gupnp
gupnp-av
gupnp-tools
gupnp-dlna
gupnp-igd
rygel

* Ancient gnome related (please retire or move the deps to copr already):
gamin
libglade2
libgnomecanvas
gnome-themes
ORBit2

* GTK VoIP client. Mostly dead upstream. Has explicit deps/tightly coupled with opal/ptlib:
ekiga
opal
ptlib

* iOS/iMobiledevice - Apple iDevice support:
ifuse
libplist
libusbmuxd
libimobiledevice
usbmuxd

* Random / no idea TBH:
libfakekey (kde-connect-libs)
icon-slicer
telepathy-mission-control
loudmouth

A list of packages that I still have an interest in but would appreciate a co-maintainer:
dotconf
festival-freebsoft-utils
speech-dispatcher
flite
csound

Thoughts on Project Connected Home over IP (CHIP)

In late December 2019 Google, Amazon, Apple and a number of other companies announced Project Connected Home over IP. Like all Internet of Things I thought I would dig into it and see what it’s made up of.

First thoughts before I even began to dig were basically “well they got there eventually!” as I’ve long believed that for IoT in the home to be successful as a whole there needs to be a single set of open standards that all devices speak so that the things can intercommunicate…. you know, just like the internet! But like so many of these things the big companies always attempt to see if they can control the entire market first, then realise they need to “compromise” and work with the other players on standards, which is when the market starts to actually mature and consumers start to win out!

If you look at the project’s web site there’s, at least at the time of writing, 16 company logos on the page, of which around six or seven I would consider household names. A standard such as this was always going to happen. If you look at the “Home IoT Market” it’s a mish-mash of competing and incompatible standards, none of which really have a lead and some of the big names, such as Apple with their HomeKit interface (I refuse to use the term “standard”), have been struggling to get any real level of foot hold in the market. Some of the more popular off the shelf devices have been things like Samsung’s “SmartThings” which implement a number of different radios etc as bridge/gateway devices to make other things work together, which in and of itself speaks volumes. If the companies themselves didn’t get themselves sorted out it would have ended up in governments mandating something. In short the whole category is a big mess!

So reading through the FAQ and various bits in the media about it what does it appear to do? It puts IP over stuff! Shocking right!? To quote the FAQ:

The goal of the first specification release will be Wi-Fi, up to and including 802.11ax (aka Wi-Fi 6), that is 802.11a/b/g/n/ac/ax; Thread over 802.15.4-2006 at 2.4 GHz; and IP implementations for Bluetooth Low Energy, versions 4.1, 4.2, and 5.0 for the network and physical wireless protocols.

So the technologies they’re using are WiFi, no real shock there, although there’s no mention of Wi-Fi HaLow AKA 802.11ah but for home use that’s nothing of note. Next up in Bluetooth LE, 4.1 – 5.0, again no real surprises here, there’s already a standard for IP over Bluetooth LE/mesh in the form of 6LoWPAN, the same as used by Thread and vanilla 802.15.4, slightly interesting they mentioned explicitly 3 versions of BT-LE and just didn’t say BT-LE in general as all versions support IP. The final option mentioned was 802.15.4, the bit that I find particularly interesting here is that Zigbee Alliance was one of the four companies in the original announcement, 802.15.4 is an open radio standard used by Zigbee, Thread, 6LoWPAN directly and a number of other protocols, Zigbee has their own Zigbee IP standard, which competes with Thread and others yet Thread, originally out of Google/Nest is the chosen one. I’ve also found Thread to not really be a completely open standard like TCP/IP, as while there is the OpenThread implementation, you need to be a paying member of the Thread Group organisation to have it certified!

So what else does the project offer? They mention the following but note the term “may include”.:

This may include a proposed standard for lifecycle events such as provisioning/onboarding, removal, error recovery, and software update.

I feel that the lifecycle events they mention are actually extremely important here, and standards in this area are just as important as connectivity standards such as IP for layer 3. If you look at components such as provisioning/onboarding there’s fairly new standards evolving such as the Intel/Arm FIDO secure device onboarding collaboration which are still quite new so I suspect they’re going to wait and watch these before making a decision which is actively a good thing in my opinion if it means one less new standard!

Overall there’s currently nothing actually new on offer here in terms of standards, what is new is a number of large companies committing to focusing on a single Layer 3 connectivity protocol. There’s already widely available hardware across WiFi/Bluetooth/802.15.4 as well as standard IP implementations for them all. This should actively replace Zigbee, Z-Wave and a number of other proprietary Layer 2/3 protocols and should be straight forward for adoption as there’s not actually a lot for anyone else to do.

I feel this is a move in the right direction and will make life easier for a lot of third parties who want their products to work with “the big three of Apple/Google/Amazon”, the move to more open standards is obviously good, but overall there’s really nothing particularly new other than another mechanism for closed companies to work together. I don’t think it’ll ultimately make much difference in general to the open source community as those companies will have their proprietary protocols/APIs sitting on top of IP, just like in other parts of the internet now. It’ll be interesting to see how open the process is once they release code and start to work on it.

Basically it’s a wait and watch so really I’m ¯\_(ツ)_/¯

Zephyr RTOS 2.x on Fedora: Configure the build environment

It’s been a while since I’ve had time to play with the Zephyr RTOS project and the project has evolved greatly since so I thought I’d document the process I went through while playing with Zephyr 2.1 on Fedora using the Fedora native cross toolchains rather than the various ones suggested by the Zephyr Project docs.

I’m going to do a couple of posts in this series to break it up a little. This first one will be getting a generic build environment setup. I’ll go into more detail on the specific devices I’m playing with but the ones I have handy are ARM Cortex-M based so that’s what I’ll be focusing on even though Zephyr RTOS supports numerous architectures.

As before it’s worth reading the latest Zephyr Getting Started guide. This time around I’m using a AWS aarch64 a1.medium instance running a Fedora 31 cloud instance but I’ve also tested that a DigitalOcean Droplet with 2Gb RAM works with the later ZephyrRTOS releases too.

Once you have a Fedora instance up and running install the required dependencies:

# disable modularity, mostly just slows things down.
$ sudo sed -i 's/enabled=1/enabled=0/' /etc/yum.repos.d/fe*mod*

# install core utils, git and cross compilers
$ sudo dnf install git-core cmake ninja-build gperf dfu-util dtc \
xz file python3-pyelftools arm-none-eabi-gcc-cs python3-pip

# requirements for the west (Zephyr meta build tool)
$ sudo dnf install python3-colorama python3-configobj \
python3-configobj python3-docopt python3-pykwalify \
python3-dateutil python3-colorama python3-docopt \
python3-pykwalify python3-packaging

We now install west:

$ pip3 install --user --upgrade west

We now have key build dependencies installed so we can initialise west and clone key repos using west (this will take a little while to do an initial clone run):

$ west init zephyr
$ cd zephyr
$ west update

Setup the Zephyr environment for cross compiling with the distribution tools:

$ export ZEPHYR_TOOLCHAIN_VARIANT=cross-compile
$ export CROSS_COMPILE=/usr/bin/arm-none-eabi-
$ source zephyr-env.sh
$ mkdir builds

By default the above uses the git master branch of the Zephyr git repo. If you wish to use a stable branch you can just check it out. The latest stable release is, currently, 2.1 so to use this you can check out the stable branch:

$ git checkout v2.1-branch

With this we now have a Zephyr RTOS development environment setup for building for Arm Cortex-M based devices on Fedora using the distribution’s cross toolchains.

Raspberry Pi improvements in Fedora 29

So Fedora 29 is probably going to account for the largest single improvement to support on the Raspberry Pi support in Fedora since we added initial support in Fedora 25. It certainly wasn’t without issue, but after quite a bit of debug we’ve got the post release issues with the WiFi back to being stable!

WiFi improvements
The support for upstream NVRAM files and the ability to add those files to linux-firmware means we get WiFi support for the Raspberry Pi 3 Series of devices out of the box! No need to grab anything, it just works! Well mostly, we had some issues with WiFi being very intermittent, as well as a missed bug around aarch64 but now with the 4.19.10 kernel everything appears to be working and stable. This makes me very happy and it took longer than I had hoped but we’re there. This device specific NVRAM driver support will also help another bunch of cheap Arm and x86 based devices that ship with Broadcom/Cyprus based WiFi support moving forward.

ZRAM enabled by default
By supporting and enabling ZRAM swap by default we get a more responsive device and less wear on the MicroSD storage. Over all we’ve seen reasonable performance improvements and to no date no major issues.

GNOME performance improvements
In May 2018 the Raspberry Pi Foundation kindly hosted a GNOME Performance Hackfest in the lovely Cambridge. Over a couple of days we managed to fix a number of issues seen, review and document a number of issues and work on a number of ways of reducing the memory usage of GNOME. Of course this improvement is primarily seen constrained devices like the Raspberry Pi but ultimately less memory utilisation by GNOME even helps devices with decent amounts of RAM and CPUs too. The fixes didn’t arrive in time for Fedora 28, but a bunch have landed in Fedora 29 providing noticeable improvements, and the GNOME team is by no means done and there will be more coming in Fedora 30 and beyond! It was an excellent start and I expect there will be ongoing enhancements here into the future especially with devices like the Purism Phone which will have similar constraints.

Initial CPU frequency support
Another of the largest issues around the Raspberry Pi is complaints it was slow, part of the issue here is that there’s no upstream CPU Frequency driver which means all models of the Raspberry Pi run at a glacial, but safe, 600Mhz out of the box compared to the highest speed, which on the 3B+ is 1400Mhz. With Fedora 29 we’ve landed an experimental cpufreq driver which allows us to run the Raspberry Pi 3-Series at much closer to optimal speeds. While this is experimental it might not stay around if we find out it causes issues or ends up being a maintenance burden but to date it hasn’t yet appeared to have caused any issues.

HWmon Voltage Sensor
There’s a new driver that reports when the voltage supplied by the PSU drops below the required voltage. It can be a bit noisy in dmesg but one of the biggest support problems we have with the Raspberry Pis is people using a power supply that’s not powerful enough, this issue is more of a problem with Fedora 29 because with the support for running at faster frequencies due to the cpufreq driver it means we also draw more power and some PSUs that were previously fine now cause issues because they can’t supply enough current.

Enhanced support for config.txt
A lot of the hardware addons are supported in Raspbian are done by enabling things in the config.txt file, this in turn does things like loading DT overlays and merging them with the base DT to enable extra hardware like HAT support. We have enhanced the way Fedora works with this which enables us to be much closer to the way Raspbian handles these things. The advantage this has is that the documentation that’s written for Raspbian is then usable by Fedora in the wider Raspberry Pi ecosystem which in turn makes it easier for end users to get HW up and running due to less differences in process. There’s further enhancements to make here but every step closer is easier for everyone to enable and use their favourite HATs.

Improved bcm283x firmware support
In preparation for grub2 support we enhanced how we deal with the firmware that the Raspberry Pi uses for booting. This deals with the early startup. We never use to upgrade it by default to ensure things didn’t break, but it also meant most users also didn’t by default get the fixes and enhancements. Now we do. The config.txt is also handled directly which means if you never edit the file you now automatically get any changes we make, because rpm handles the file as a config file, if we change it you get a .rpmnew file so you won’t lose your changes.

Camera support
This wasn’t available in the Fedora 29 4.18 kernels, but with the rebase to the 4.19 kernel the support for the camera on the Raspberry Pi CSI Camera interface improved enough we could enable this in Fedora. The early 4.19 kernels don’t automatically detect and load support if the camera module is attached. There’s some patches in 4.20 in rawhide for this, and we’ll bring some of this to 4.19 soon, and we’re working with upstream to further improve the camera support. You’ll also want the latest bcm283x firmware which tweaks some of the config.txt and updates to a firmware with ISP fixes.

Another improvements
There was also a number of general Arm improvements which sped up crypto on the Raspberry Pi, improved the USB, fixed up some issues with the wired ethernet on the 3B+, power and a number of other fixes. As always there’s more coming. The 4.20 kernel rebase should also bring with it analog sound support early in the new year.

Conclusion
Overall I was pleased with the work that landed in Fedora over 2018 for the Raspberry Pi. The WiFi regression was disappointing, but now with that fixed in 4.19.10 we have WiFi support out of the box without users needing to download anything which moving forward will make things a lot more straight forward. The initial support for the camera makes it much more useful in numerous use cases and we’ll really polish up the HAT support in Fedora 30 which for me is the last remaining big ticket item for Raspberry Pi support. There’s still some annoying bits around the EDID detection in the display, but there’s work to improve that upstream, and also there’s work to land the media decode offloading upstream too which will also one of the few remaining bits.

Using ZRAM as swap on Fedora

One of the changes I did for Fedora 29 adding using ZRAM as swap on ARM. The use of compressed RAM for swap on constrained single board computer devices has performance advantages because the RAM is an order of faster than most of the attached storage and in the case of SD/emmc and related flash storage it also saves on the wear and tear of the flash there extending the life of the storage device.

The use of ZRAM as swap isn’t limited to constrained SBCs though, I also use it on my x86 laptop to great effect. It’s also very simple to setup.

# dnf install zram
# systemctl enable zram-swap.service
# reboot

And that’s it! Simple right? To see how it’s being used there are three commands that are useful:

# systemctl status zram-swap.service
● zram-swap.service - Enable compressed swap in memory using zram
   Loaded: loaded (/usr/lib/systemd/system/zram-swap.service; enabled; vendor preset: disabled)
   Active: active (exited) since Tue 2018-10-09 22:13:24 BST; 3 days ago
 Main PID: 1177 (code=exited, status=0/SUCCESS)
    Tasks: 0 (limit: 4915)
   Memory: 0B
   CGroup: /system.slice/zram-swap.service

Oct 09 22:13:24 localhost zramstart[1177]: Setting up swapspace version 1, size = 7.4 GiB (7960997888 bytes)
Oct 09 22:13:24 localhost zramstart[1177]: no label, UUID=d79b7cf6-41e7-4065-90a9-000811c654b4
Oct 09 22:13:24 localhost zramstart[1177]: Activated ZRAM swap device of 7961 MB
Oct 09 22:13:24 localhost systemd[1]: Started Enable compressed swap in memory using zram.
# swapon
NAME       TYPE      SIZE   USED PRIO
/dev/zram0 partition 7.4G 851.8M   -2
# zramctl
NAME       ALGORITHM DISKSIZE   DATA  COMPR  TOTAL STREAMS MOUNTPOINT
/dev/zram0 lz4           7.4G 848.3M 378.4M 389.9M       8 [SWAP]
#

When I was researching the use of ZRAM there was a lot of information online. A lot of implementations sliced up the zram into multiple slices to enable the balancing of the slices across CPUs, but this is outdated information as the zram support in recent kernels is now multi threaded so there’s no performance advantage to having multiple smaller swap devices any longer, and having a single larger swap space allows the kernel to be more effective in using it.

In Fedora all the pieces of the Fedora implementation are stored in the package source repo. So those that are interested in using zram for other use cases are free to test it. Bugs and RFEs can be reported as issues in pagure or in RHBZ like any other package.

Fedora on the UDOO Neo

Some time ago I backed the UDOO Neo Kickstarter as it looked like a nifty, well featured, IoT device. I got the full option which came with 1Gb RAM and both wired and wireless Ethernet and some add-on sensors. It was a well run kickstarter campaign and the device was well packaged with a fab box. It has both a Cortex-A9 processor to run Fedora and a Cortex-M4 embedded processor to enable you to do Arduino style functionality which should be interesting to experiment with.

For various reasons it has sat around gathering dust, it’s been a bit of a long drawn out process with me randomly poking it as time allowed.. Primarily this was because there was no decent upstream U-Boot and kernel support, and I’d not had the time to hack that up myself from various downstream git repositories, but even without Fedora support their forked Ubuntu distro in the form of UDOObuntu has an experience that is truly terrible!

Late 2016 the problem of a lack of upstream support for U-Boot and kernel changed with initial basic support landing upstream for all three (Basic, Extended and Full) models so with a few cycles over a weekend it was time to dust it off to see if I could get Fedora 26 (did I mention this has been long running?) running on it and to see what worked.

The first thing for me to do was to setup a serial console for easy debugging. The UDOO Neo documentation is generally outstanding and the pins for the UART1 TTL are documented. Two things to note here is that the headers are female rather than the usual SBC male pins so I had to bodge my usual usb to serial TTL with some male-male jumper wires and you’ll need a ground for the TTL which is undocumented on their page, I used one of the GNDs as documented on connector J7 and all was good.

So after an initial set of fixes to the U-Boot support it saw my Fedora install and started to boot! Success! Well sort of, as mentioned above the initial support is rudimentary, it started to boot the kernel and very quickly managed to corrupt and destroy the filesystem not making it much beyond switch root. That wasn’t good. In the last week or two I’ve had a little time to look again, similar issues, it was better than it was a year or so ago but it still ended up with corruption. I reached out to one of the maintainers from NXP that deals with a bunch of the i.MX platforms and I got directed to a handful of patches, a test kernel and image later and a test boot… all the way to initial-setup! SUCCESS!

The core support for the i.MX6SX SoC and the UDOO Neo is pretty reasonable, with the MMC fixes it’s been very stable, all the core bits are working as expected, included wired and wireless network, thermal, cpufreq, crypto and it looks like the display should work fine. There’s a few quirks that I need to investigate further which should provide for a fun evening or weekend hacking. There has also been recently merged support for the i.MX6SX Cortex-M4 land upstream in Zephyr upstream for the 1.13 release, so getting that running and communication using Open-AMP between Fedora and Zephyr should also be an interesting addition. I think this will be a welcome addition to Fedora 29, and not a moment too soon!!

Fedora on the UP Squared

With the IoT Working Group and Edition moving forward I’ve been looking for an x86_64 device suitable for testing IoT related use cases. I was originally planning on using the MinnowBoard or Joule but given Intel has killed those product lines off it was back to the drawing board. I eventually settled on the UP², in particular I chose the UP² Pentium-4GB-32GB-PACK as it had everything I wanted in one box.

Hardware

The on paper hardware specs show a recent generation Intel Apollo Lake core, reasonable memory and storage options, an onboard FPGA, USB-3, dual ethernet and various other bits. The kit comes with options for active or passive cooling and the later the heatsink is massive, for the moment I’m running it on the passive cooling. The case is OK, I wouldn’t rave about it though. The power connector on the other hand is terrible, the PSU cable doesn’t seat well into the board and I’ve bumped it already and had it lose power, the power button is also tiny, so small in fact I mistook it for a reset button.

Fedora support

As you would expect the support in Fedora 27 is decent, accelerated 4K graphics, wired RealTek ethernet NICs, Intel m.2 PCI-e WiFI/Bluetooth, although the later is only 4.2 for IoT I would have appreciated Bluetooth 5, all work out of the box as expected. The firmware is uEFI and in theory supports secure-boot but I couldn’t work out how to turn it on in the firmware menus as it was greyed out, it also has a TPM2 module I’ve not had time to investigate. They eagle eyed would also note that I mention Fedora 27 even though Fedora 28 has been out a few days. Well for some reason F-28 doesn’t boot, I tried the network installer and the Workstation live image, they both get to the grub menu, then I get no output and nothing for a moment then it resets and we start again. I need to investigate this further but Fedora 27 Workstation livecd booted and installed fine so that’s what it’s got for the moment. Ultimately this is going to a host to test Fedora IoT so while I tested the general support this is fine.

IoT support

There’s a number of reasons I chose this particular device as an IoT test device:

  • Reasonably priced with a reasonable feature set.
  • Intel hasn’t killed it off yet like they’ve done with the Joule platform and Minnowboard 3 so I could actually buy it 🙂
  • Multiple network interfaces, reasonable WiFi and Bluetooth support.
  • Industrial IO sensors via an onboard Intel Sensor Hub. lsiio is reporting 9 sensors of various types. I’ve not checked this further yet.
  • USB-3, a Raspberry Pi HAT compatible connector and other options to add IoT related functionality or interfaces.

FPGA support

I’ve not looked at the FPGA support at all. The upstream kernel now has a FPGA Manager Framework and there’s a bunch of Altera FPGA support there but I’m not sure how it maps to this device. I also have to investigate open source toolchains for FPGA bitstreams as a lot of them just aren’t, I’ll likely do the HW enablement side of things and leave the toolchain bits to people that understand them. I also have the 96boards Ultra96 board so FPGA investigation was already on my Fedora 29 To Do list, and a lot of other people seem quite interested in them of late, no idea why 😉

The Raspberry Pi 3 B+ in Fedora

So I’m sure none of you are surprised to hear that I’ve been asked a bunch about support for the Raspberry Pi 3 B+ in Fedora. Well the good news is that it’ll be supported in Fedora 28. Most of the bits were there for the official Fedora 28 beta, it just needed a minor work around, but nightly images since Beta have had all the bits integrated so the upcoming Fedora 28 GA release will support the Raspberry Pi 3 B+ to the same levels as the original 3 B on both ARMv7 and aarch64. The Fedora Raspberry Pi FAQ has now been updated with all the details of both the RPi3+ and Fedora 28.

WiFi

As with the original 3 there’s files with the firmware we can’t redistribute. The details are documented in the Fedora Raspberry Pi FAQ.

You can grab the files like for the 3 although there’s now an extra one, which you don’t really need, but it gives you all the 802.11a frequencies:

$ sudo curl https://fedora.roving-it.com/brcmfmac43455-sdio.txt -o /lib/firmware/brcm/brcmfmac43455-sdio.txt
$ sudo curl https://fedora.roving-it.com/brcmfmac43455-sdio.clm_blob -o /lib/firmware/brcm/brcmfmac43455-sdio.clm_blob

I’ve also done a rpm of the files for both editions of the RPi3 (plus a few other brcm adapters used on ARM boards). You can either just grab the rpm or setup the repo if you want to get the latest if I update it:

$ sudo curl https://fedora.roving-it.com/wireless.repo -o /etc/yum.repos.d//wireless.repo
$ sudo dnf install brcm-firmware

Issues

Like all new things there’s often a few teething problems. Over all the support for the new RPi 3 B+ is relatively solid but like all new devices there’s some bits still bedding down, and the combination of a new device and new OS there’s been a few minor issues that have been seen in some circumstances. We pulled in the latest firmware just before GA to fix some issues but no doubt as it gets wider testing both in Fedora and in the wider Raspberry Pi community more issues may well come up.

The ones we’re aware of are:

  • The new USB hub and gigbit ethernet interface have seen a few issues in some cases. We’ve pulled in quite a few patches to help stabilise the NIC in Linux and it now mostly works in the vast majority of use cases.
  • The USB hub in u-boot, uEFI and grub on aarch64 can cause some issues. If there’s too many USB devices connected it sometimes won’t boot or will do so really slowly. The work around for the moment is to disconnect all the USB devices until Fedora has started to boot and then plug them in.

In Fedora we’ll deliver updates and fixes by the usual updates, in particular as fixes land upstream we’ll review and land them where useful into Fedora, more than likely via a kernel update. If you see a uboot-tools or a bcm283x-firmware update you’ll want to run the rpi-firmware-update command to update the firmware and then reboot for it to take effect.

Older releases

We won’t be supported the new device in the older releases. Why I hear you say? Well it’s possible but it needs update to the firmware, U-Boot and kernel to work. The Raspberry Pi foundation respun Raspbian to support it and basically it’s not straight forward. Much better to have a new shiny Fedora for a new shiny device!

Fedora IoT Edition is go!

Tap tap tap… is this on?

So the Fedora Council has approved my proposal of IoT as a Council Objective. I did a presentation on my IoT proposal to the council a few weeks ago and we had an interesting and wide ranging discussion on IoT and what it means to Fedora. I was actually expecting IoT to be a Spin with a SIG to cover it but the Council decided it would be best to go the whole way and make it an Official Edition with a Working Group to back it! Amazing! One of the side effects of IoT being an accepted Objective is that the Objective Lead has a seat on the Council.

So I would say the real work starts now, but the reality is that there’s been no small amount of work I’ve been doing to get to this point, but there is also now a lot of work to do to get us to a release. We’re going to aim this initially for Fedora 29, with the intention to have a lightweight spin style process to get things up to speed as quick as possible between now and then.

So what will be happening over the coming weeks (and months)? We’ll be getting the working group in place, getting an initial monthly release process in place so that people can start to have something to kick the tires with and provide feedback and drive discussion. With those two big pieces in place we can start to grow the Fedora IoT community and work out the bits that work and bits that don’t work. Iterate early and iterate often as is often said!

So of course the big question is how do you get involved? We’ll be tracking all of the Working Group efforts in a number of places:

  • Fedora IoT Pagure Group: We’ll be using this for issue tracking, release milestones, and for git repositories to contain things like container recipes.
  • Fedora IoT mailing list: If you don’t have a FAS account you can subscribe by emailing (blank is fine) iot-subscribe AT lists.fedoraproject.org and the list server will reply with subscription options.
  • IRC on #fedora-iot
  • Fedora IoT Tracking bug: This will be primarily for tracking dependencies and component RFEs and issues.

The above list will change and evolve as we go, I expect the pagure group, mailing list and IRC to be the primary places of communication. There will of course be updates also on this blog, no doubt Fedora Magazine, FedoraIoT on twitter and elsewhere.

What will there be to do? Well lots, and that is still obviously in flux at the moment. The things that come to mind that we’ll definitely need to address will include, but certainly won’t be limited to, awesome docs, the actual OSTree Atomic host image which will be the key foundation, CI/CD pipelines to automate testing as much as possible, release processes including landing of features once they’re ready, containers and layers to add functionality, a selection of supported reference devices (see also CI/CD in this context too), various IoT frameworks, hardware enablement such as wireless standards and distinct from the supported reference HW, security (a single word can’t even begin to describe this iceberg!) and developer experience to name but a few but there’s so much more! Is everyone excited? Of course you are!

A small 2017 retrospective

I don’t have a huge tendency to do new year resolutions, I’m more the continuous integration type of person where I make a resolution at any time of the year when it makes sense. One thing that did want to achieve as 2017 was starting out was to blog more, with an aim of at least one post a month, and preferably a post every two weeks. I didn’t quite make it with a total of ten posts for 2017, a total of two more than in 2016, so it was a slight improvement! If you count the fifteen draft posts that I wrote in the year, which in most cases just needs some tech details, or a couple of bug fixes to polish the details to actually post, I actually wasn’t that far from the a post every two weeks goal. Let’s see how I get on with this in the new year!

I also started full time into my IoT platform role, and to say it hasn’t been a completely expected roller coaster would be an understatement…. I love a good roller coaster and I think this is the biggest one I’ve ever climbed upon. I got involved in areas of IoT and components of the entire stack that I never thought I would be involved in. I seem to wear about 8 different hats, at last count, and it’s certainly been fun and interesting but busier than I expected, getting pulled into different things that I and others hadn’t planned or anticipated. It’s been a lot of fun, in the Fedora IoT space I didn’t achieve nearly as much as I had hoped but I had also not expected a few of the big blockers and other issues that slowed that down, thankfully it looks like a lot of that is pretty much resolved so I can start driving that forward early in the new year. I have lots of ideas here and this year we’ll start to build the IoT community in Fedora and by the end of the year I believe it’ll be fun and useful!

In the ARM space there was quite a lot of achievements. The big one being the initial support of aarch64 SBCs (finally!), I was very proud of the work we achieved here, it’s a single install path with uEFI/grub2 and a single install path. More work in the short term, by a team of cross team distro people, which took us a lot longer than I’d hoped, but the outcome is a lot better experience for end users and a much more supportable platform for those that need to support it moving forward! It was no means our only achievement with a lot of other ARM improvements including on the Raspberry Pi, accelerated GPUs, initial support for the 96boards platforms. Three is of coarse already LOTS of work in motion for the ARM architectures in 2018 and I’m sure it’ll be as fun and insanely busy as always but I feel we’re now going into it with a good base for the aarch64 SBCs which will rapidly expand in the devices we support moving forward!

Other than that I had a lot of travel, meetings, talks and other things. AFAICT I took around 35 flights, attended around a dozen conferences, numerous meetups and gave around 20 talks! A long with other Fedora and work commitments it was an overall insanely busy year! I somehow, with some of the bangs that 2018 has already shown us (and TBH I blame 2017 for meltdown/spectre) I doubt the coming year will be any quieter than the last… lets see if in among all of that I can meet the ~26 blog posts goal this time around?