Overview of aarch64 SBC support in Fedora 27

Support for ARM 64 bit (aarch64) Single Board Computers (SBCs) has been one of the most highly requested features along side the Raspberry Pi. It’s something I’ve been working towards almost as long too. Finally with Fedora 27 I felt we would have enough of the bits in place for a Minimum Viable Product (MVP).

You’ll note from the Fedora change linked above I was very cautious with what we planned to achieve. The change has a very focused list of images: Server, Workstation and Minimal and a limited list of devices: basically the Raspberry Pi 3, the 96boards Dragonboard 410c and HiKey, and a handful of AllWinner devices with a focus on the Pine64 series of boards. The reason for this was I knew there was going to be a lot of low level boot and kernel bits that needed focus and polish and the Fedora 27 cycle was severely limited time and resource wise so the plan was to focus on getting all the core bits into place for Fedora 27 and have a couple of well polished devices and then expand that rapidly for Fedora 28.

The key functionality we were aiming for was a well polished uEFI implementation in u-boot to enable a single install/boot path in Fedora on aarch64 using uEFI/shim/grub2 to boot Fedora on both SBCs and SBSA compliant aarch64 platforms. We now have that platform in place, primarily due to Herculean efforts of Rob Clark and Peter Jones, as well as many others who have provided insight into the deep dark details of the uEFI specification. Fedora 27 will ship with a quite heavily patched, well by Fedora’s standards anyway, u-boot 2017.09 which provides us the core of this functionality enabling us to use a vanilla upstream shim and grub2 to boot a standard Fedora. All this work is already upstream, or making it’s way there in 2017.11. In Fedora 28 there will be even more improvements that will enable us to do a bunch of other cool stuff (that’ll be a post for later!) and also enable much quicker upstream board enablement now all the core bits are in place.

So what do we actually support? Well all the usual bits that you would expect on a standard Fedora install, whether it be x86_64, ARMv7 or aarch64, like SELinux, containers, desktops and all the other bits. There’s a few bits and pieces that are a little rough around the edges but overall the feature is pretty robust. On a board by board feature set lets break the this down across the boards:

Raspberry Pi 3

The support for the Raspberry Pi3 is the equivalent to the ARMv7 support but with boot via uEFI/grub2. The memory isn’t quite as good as on 32-bit but that’s to be expected, overall it’s pretty reasonable for a device of the specs and cost. Like on 32 bit support we’re seeing regular improvements each release and throughout the releases. The aarch64 support for the RPi3 is just an evolution to this.

DragonBoard 410c

The support for the DragonBoard 410c is looking pretty decent. Qualcomm has been doing a pretty decent effort to get stuff upstream, we have firmwares for the GPU and for video decode/encode upstream as well, along with kernel drivers and the open freedreno 3D drivers, HDMI audio should work as well. The WiFi firmware isn’t yet upstream but I’ll document how/where to get that and hopefully that should be in linux-firmware soon as well. Overall I’m quite happy with the status of this device, although like all devices with 1Gb RAM it’s a little constrained, but that should make the newly announced 820c with 3Gb of RAM a decent device ;-). All the details for getting it running will soon be in the Fedora 96boards wiki page.

HiKey

Most features and functionality of the HiKey are supported, note this isn’t the HiKey960 (look to F-28 for support for that), except accelerated graphics due to the use of a MALI GPU. Other than that the functionality is pretty decent. You’ll likely want the latest tianocore firmware and the details for that can be found on the Fedora 96boards wiki page.

Pine64 (AllWinner A64 SoC)

We actually should have a number of devices based on the AllWinner A64 SoC working here but we’ve only tested the 3, 2Gb/1Gb/512Mb, Pine64 device sizes. The support for these devices is headless and you will need a serial console else you’re on your own as none of the display bits in the kernel have made it upstream, and of course the GPU is a MALI 400 series so when it does it won’t be fast. The support for the rest of the device is basic, it’s usable for a headless server style device, we support network, USB, KVM, RTC and a few other bits. Other than display we don’t yet support the SDIO attached wireless, sound, crypto offload or any of the other media interfaces. A lot of this is under review upstream so I think Fedora 28 should look much better for this series of devices and 4.15 might even bring very basic console output. Speaking of series of devices which ones should actually work other than the three Pine64 devices? Well the following A64 SoC devices have a Fedora built u-boot and kernel DT support so should work as well as the Pine64: BananaPi-m64, OrangePi Win, SoPine baseboard (PineBook boots if you’re happy with serial console), NanoPi-A64 and the A64-OLinuXino. We had some troubles with the AllWinner H5 SoC devices earlier in the cycle but I’ve had a couple of reports that it seems to be resolved so they should work too and that adds the Orange Pi PC2, Prime and Zero+ 2 as well as the NanoPi NEO2. So that’s around a dozen or so devices! 🙂

Other ARM64 SBCs

I’ve had reports that other aarch64 SBCs boot on Fedora just fine. I’ve not listed those where I can’t verify whether they boot with our uEFI enabled u-boot. Looking around on my desk I do have a number of devices that I expect us to be supporting in Fedora 28, or maybe even just enabling u-boot bits in a F-27 update.

Overall I’m pretty happy with the state of Aarch64 SBCs for Fedora 27 and what we’ve managed to achieve is such a short cycle!

3 thoughts on “Overview of aarch64 SBC support in Fedora 27”

  1. In the section `Other ARM64 SBCs`
    I can tell you it work on a Banana Pi M64 🙂

    I don’t have a lot of time to work on it, i stuck on a 4.13 kernel. I had to link the /boot/dts-$(uname -ar) directory to /boot/dts to be able to boot with ethernet otherwise i got PHY errors (something really ugly :/ ). Anyway it works smoothly.

Comments are closed.